HEINRICH+HERTZ+INSTITUT FÜR SCHWINGUNGSFORSCHUNG BERLIN+CHARLOTTENBURG

Technischer Bericht Nr. 33

Zur Theorie der Längstwellenausbreitung

Dr. H. VOLLAND

1 9 5 9

Technischer Bericht Nr. 33

Zur Theorie der Längstwellenausbreitung

Zusammenfassung

Nach einer Diskussion über die Brauchbarkeit einer Modell-Tonosphäre mit scharf begrenzter Unterkante und konstanter Leitfähigkeit für die Ausbreitung von sehr langen Radiowellen (λ von der Grössenordnung 10 km) und einer Abschätzung des Einflusses des Erdmagnetfeldes werden die wellenoptische und die strahlenoptische Theorie der Längstwellenausbreitung entwickelt und gegenübergestellt. Der Einfluss der Erdkrümmung wird besprochen und an Hand eines Beispieles die Uebereinstimmung beider Theorien im Gebiet der Ueberschneidung ihrer Gültigkeitsbereiche (300 - 2000 km Entfernung vom Sendeort) gezeigt.

Heinrich-Hertz-Institut für Schwingungsforschung

Der Bearbeiter

gez, H. Volland (Dr. H. Volland)

Der Abteilungsleiter Der Institutsdirektor gez. Gundlach gez. Cremer (Prof. Dr.-Ing. F.W. Gundlach) ' (Prof. Dr.-Ing. L. Cremer)

Berlin-Charlottenburg, den. 22. Oktober 1959

1. Einleitung

Im Heinrich-Hertz-Institut für Schwingungsforschung in Berlin-Charlottenburg werden seit dem 1. August 1957 Feldstärkemessungen von englischen Längstwellensendern auf verschiedenen Frequenzen (16; 19,6; 51,95 kHz) vorgenommen. Die Entfernung zwischen Sende- und Empfangsort beträgt etwa 1000 km. Für eine Deutung des tages- und jahreszeitlichen Verhaltens der registrierten Feldstärke werden im folgenden die Theorien der Ausbreitung von Längstwellen zusammengestellt, die bei dieser mittleren Entfernung sowohl wellenoptische als auch strahlenoptische sein können. Die Auswertung soll sich auf die Zeit zwischen Sonnenauf- und -untergang beschränken. Am Tage findet aber die Reflexion der Längstwellen im D-Gebiet unterhalb 80 km statt, und es wird sich herausstellen, dass der Einfluss des Erdmagnetfeldes bis zu einer Hohe von 75 km in erster Näherung vernachlässigbar ist und unberücksichtigt bleiben kann.

1

Ueber die Zusammenstellung und Deutung der Messergebnisse wird an einer anderen Stelle berichtet werden [1].

2. Das Ionosphärenmodell

Erfahrungsgemäss werden elektromagnetische Wellen bis 100 kHz am Tage im ionosphärischen D-Gebiet unterhalb 80 km Höhe reflektiert [2]. In diesen Höhen ist die Elektronendichte kleiner als 1000 Elektronen/cm³ und steigt erst dann sehr rasch an. In der Abb. 1 ist ein mittleres mittägliches Elektronendichteprofil in Abhängigkeit von der Hohe dargestellt, das aus neueren Radio- und Raketenmessungen gewonnen worden ist [3]. (Das in Abb. 1 ausserdem eingezeichnete Stosszahlprofil stammt von M. NICOLET [4] und berücksichtigt ebenfalls neuere Raketenaufstiege). Für lange Wellen der Grössenordnung $\lambda = 10$ km hat sich ein Ionosphärenmodell mit scharfer unterer Begrenzung und konstanter Elektronendichte als brauchbar erwiesen [5] [6]. Um abzuschätzen, inwieweit das obere D-Gebiet mit seiner um den Faktor 10² grösseren Elektronendichte einen Einfluss auf die Reflexion der Längstwellen im unteren Teil der D-Schicht hat, wird die Ionosphäre

Abb. 1 Mittleres mittägliches Elektronendichteprofil N nach R.E. HOUSTON [3] u. mittleres Stoßzahlprofil v nach M. NICOLET [4] durch ein einfaches Zweischichtenmodell mit den Brechnungsindices n₁ und n₂ angenähert (vergl. Abb. 2). Die Reflexions-

Abb. 2 Reflexion einer elektromagnetischen Welle an einem zweigeschichteten Medium mit den Brechungsindices, n₁ und n₂,

koeffizienten vertikal bzw. horizontal polarisierter ebener elektromagnetischer Wellen lassen sich auf bekanntem Wege leicht ermitteln und lauten:

$$R_{\parallel} = \frac{n_{1}^{2} \cos \vartheta - Q_{\parallel} \sqrt{n_{1}^{2} - \sin^{2} \vartheta}}{n_{1}^{2} \cos \vartheta + Q_{\parallel} \sqrt{n_{1}^{2} - \sin^{2} \vartheta}}$$
(1)

$$R_{\perp} = \frac{\sqrt{n_{1}^{2} - \sin^{2} \vartheta} - Q_{\perp} \cos \vartheta}{\sqrt{n_{1}^{2} - \sin^{2} \vartheta} + Q_{\perp} \cos \vartheta}$$
(2)

mit

 R'_{\parallel} und R'_{\perp} sind die gewöhnlichen Reflexionskoeffizienten beim Uebergang der Wellen vom Gebiet I in das Gebiet II. Ihr Betrag ist kleiner oder gleich eins. $k = 2\pi/\lambda$ ist die Wellenzahl, und b ist die Breite der Schicht I. Mit $n_1^2 = 1 - \frac{i}{L}$ und $L \approx 1$ (siehe Abschnitt 3) sowie schrägem Einfall ($\Im \gtrless 60^\circ$) wird der Betrag der Exponentialfunktion in GL. 3

Setzt man b = 10 km (siehe Abb. 1), so erkennt man, dass oberhalb 10 kHz nahezu $Q_{\parallel} = Q_{\perp} = 1$ ist. Der Einfluss des oberen Gebietes grösserer Elektronendichte ist also vernachlässigbar klein. Die obere Grenze der Anwendbarkeit dieses Modells liegt etwa bei $\lambda = b$ (f = 30 kHz), weil dann schon der stetige Verlauf der Elektronendichte berücksichtigt werden muss.

Es wird sich herausstellen, dass ein einfaches Modell mit scharf begrenzter Ionosphäre konstanter Leitfähigkeit im Frequenzbereich 5 - 50 kHz wesentliche Ausbreitungscharakteristika richtig wiedergibt [1] :

3. <u>Einfluss des Erdmagnetfeldes auf den Brechungsindex in der Iono-</u><u>sphäre</u>

Infolge Anwesenheit des Erdmagnetfeldes ist die Ionosphäre doppelbrechend. Zur Bestimmung des Brechungsindex einer scharf begrenzten Ionosphäre konstanter Elektronendichte und Stosszahl mit äusserem homogenen Magnetfeld folgen wir dem Beispiel von J.W. YABROFF [7] : Eine ebene Welle breite sich im Vakuum in Richtung (ϑ, φ) aus und treffe auf ein scharf begrenztes Plasma. Die Begrenzungsfläche sei mit der Ebene z = 0 identisch (Abb. 3).

Abb. 3

Das homogene Magnetfeld sei parallel zur x-z-Ebene ausgerichtet und sei um den Winkel te gegen die z-Achse geneigt. Für den einfallenden Vektor der elektrischen Feldstärke wird der Ansatz

im Vakuum und

 $\mathcal{G}_{I} = \mathcal{G}_{I_{0}} e^{j\omega t - jk(x \sin \vartheta \cos \varphi + y \sin \vartheta \sin \varphi + D z)}$ (5)

im Plasma gemacht. Damit ist bereits die Stetigkeit der Tangentialkomponenten der elektrischen Feldstärke erfüllt.

Der komplexe Wert D hat die Bedeutung, dass

$$\operatorname{ang} \vartheta' = \frac{\sin \vartheta}{\operatorname{Re} D} \quad \text{ist},$$
(6)

wo (ϑ, φ) die Ausbreitungsrichtung der Fläche gleicher Phase ist. Die Phasengeschwindigkeit in dieser Richtung beträgt

$$= \frac{1}{\left(\operatorname{Re} D\right)^2 + \sin^2 \vartheta}, \qquad (7)$$

und k·Im D ist ein Mass für die Dämpfung der Wellen in z-Richtung. Den Brechungsindex gewinnt man aus dem Ansatz

$$\sin \vartheta' = n \sin \vartheta'$$
$$D = n \cos \vartheta' \qquad zu$$
$$n^{2} = D^{2} + \sin^{2} \vartheta'$$

Elimination von 4 aus den MAXWELL'schen Gleichungen

$$rot \mathscr{G} = \varepsilon_{0} \frac{\partial \mathscr{G}}{\partial t} + J$$

$$rot \mathscr{G} = -\mu_{0} \frac{\partial \mathscr{G}}{\partial t}$$
(9)

(8)

unter Verwendung der Bewegungsgleichung der Elektronen

$$m \frac{d\omega}{dt} + m\nu\omega = -e(\psi + \mu_0[\omega, \psi])$$
(10)

und ${}^{\perp}N_e e = J$ ($N_e = Elektronendichte$)

ergibt

$$\left[\frac{1}{k^2} \operatorname{rot rot} - T\right] \frac{\psi}{E} = 0$$
(11)

Der Tensor T hat die Gestalt

$$\mathbf{T} = \begin{pmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ -\mathbf{m}_{12} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{13} & -\mathbf{m}_{23} & \mathbf{m}_{33} \end{pmatrix}$$

mit

$$m_{11} = 1 + \frac{h_x^2 - s^2}{s(s^2 - h^2)} \qquad m_{12} = -\frac{jh_z}{(s^2 - h^2)}$$
$$m_{22} = \frac{s}{(s^2 - h^2)} \qquad m_{23} = -\frac{jh_x}{(s^2 - h^2)}$$
$$m_{23} = 1 + \frac{h_z^2 - s^2}{s(s^2 - h^2)} \qquad m_{13} = \frac{h_x h_z}{s(s^2 - h^2)}$$

(12)

Geht man mit dem Ansatz Gl. 5 in die Gl. 11 ein, so erhält man ein System von drei homogenen Gleichungen für die Komponenten von \pounds , deren Determinante bei einer nichttrivialen Lösung verschwinden muss. Dies führt zu einer Gleichung 4. Grades für D:

$$d_4 D^4 + d_3 D^3 + d_2 D^2 + d_1 D + d_0 = 0$$
 (13)

mit

aus der D bzw. n bestimmt werden können. Für a = 0 ($\vartheta = 0^{\circ}$) erhält man die für diesen Spezialfall abgeleitete APPLETON'sche Formel:

$$D^{2} = n^{2} = 1 - \frac{1}{s - \frac{h_{x}^{2}}{2(s - 1)} \pm \sqrt{\frac{h_{x}^{2}}{2(s - 1)}^{2} + h_{z}^{2}}}$$
(15)

Für die nachfolgende Untersuchung interessiert die Ausbreitungsrichtung in der y-z-Ebene ($a_x = 0$; $a_y = a$). Es ist für 52⁰ Breite das Dipolfeld der Erde

$$H = 0,52 \text{ Gauss}$$
$$\vartheta_2 = 21^\circ$$

und

Damit wird aus Gl. 13

$$n^{2} = 1 - \frac{1}{s \left[1 - \frac{h_{x}^{2} + a^{2}h_{z}^{2}}{2s(s-1)} \pm \sqrt{\left[\frac{h_{x}^{2} + a^{2}h_{z}^{2}}{2s(s-1)}\right]^{2} + \frac{h_{z}^{2}(s-1-a^{2}s)}{s^{2}(s-1)}\right]}$$
(16)

oder

$$n^{2} = 1 - \frac{j\omega_{o}^{2}}{\sqrt{\omega \left[1 + A \pm j\sqrt{A^{2} + B^{2}}\right]}}$$

(16a)

a

$$A = \frac{j\omega (\omega_x^2 + a^2 \omega_z^2)}{2\nu (\omega_o^2 + j\nu \omega)} \qquad B = \frac{\omega_z}{\nu} \sqrt{\frac{\omega_o^2 + j\nu \omega}{\omega_o^2 + j\nu \omega}}$$

mit

Gebrauch gemacht worden, die für Frequenzen ≦ 50 kHz bis etwa 80 km Höhe erfüllt ist (vergl. Abb. 1).

Zur Abschätzung der Beträge von A und B entnehmen wir der Abb. 1 Elektronendichte und Stosszahlen für die Höhen 70, 75 und 80 km (siehe Tab. 1).

h(km)	70	75	80
v (s ⁻¹)	1,1·10 ⁷	4,9.10 ⁶	2,2-10 ⁶
$N_{e}(m^{-3})$	1,5.10 ⁸	.1,6.10 ⁸	5,0.10 ⁸

Tabelle

Für $\omega = 10^5 \text{ s}^{-1}$ und a = 1 gibt Tabelle 2 die Beträge von A und B an.

h(km)	70	75	80
··· A	0,3	1,1	1,1
в	0,5	1,4	4,2

Tabelle 2

Tabelle 2 zeigt, dass die Vernachlässigung des Magnetfeldes in unserem speziellen Fall der Ausbreitung in 75 km Höhe schon eine grobe Näherung und darüber hinaus sicher nicht mehr zulässig ist, Tatsächlich wird später gezeigt werden, dass oberhalb etwa 75 km Höhe die Gültigkeit des verwendeten Modells, bei welchem das Erdmagnetfeld nicht berücksichtigt ist, eingeschränkt wird

[1]. Diese Einschränkung betrifft vor allen Dingen die zweifach reflektierte Welle, die durch die anisotrope Leitfähigkeit der Ionosphäre stärker als die einfach reflektierte Welle in Mitleidenschaft gezogen wird. Andererseits kann aus der Gültigkeit des Modells unterhalb 75 km geschlossen werden, dass die Daten für die Stosszahlen grössenordnungsmässig richtig sind. Das hier verwendete Ionosphärenmodell hat also den Brechungsindex

$$n = \sqrt{1 - \frac{j}{L}} \qquad \text{mit } L = \frac{v \, \omega}{\omega_{Q}^{2}} \qquad (17)$$

und die Leitfähigkeit

$$\tilde{r} = \frac{\varepsilon_0 \omega}{L}$$
,)18)

wie aus der Beziehung

und der 1. MAXWELL'schen Gleichung folgt.

 $n^{2} =$

Für 75 km Höhe und die Frequenz f = 15 kHz ermittelt man

Die Ionosphäre hat also für Längstwellen eher den Charakter eines Dielektrikums als den eines Leiters.

4. Strahlenoptische Theorie der Längstwellenausbreitung

In Unkenntnis von genauen Antennendiagrammen der beobachteten Längstwellensender und zur Vereinfachung der Rechnung werden die Senderantennen durch vertikale Dipole ersetzt. Da es im folgenden immer nur auf relative Feldstärken ankommt, wird der dadurch entstehende Fehler kaum ins Gewicht fallen. Am Empfangsort wird die Vertikalkomponente der elektrischen Feldstärke gemessen, die hier vor allem interessiert.

Es sei

$$\vec{p} = \vec{p}_{o} e^{j\omega t}$$

das Moment eines Hertz'schen Dipols in z-Richtung eines zylindrischen Koordinatensystems (ρ , φ , z). Der Dipol befinde sich in der Höhe z_o im Gebiet zwischen (ebener) Erde und Ionosphäre (Abb.4). Die Ionosphäre besitze eine scharfe untere Begrenzung in der scheinbaren Höhe h über der Erdoberfläche und habe den konstanten Brechungsindex n_i (Gl. 17). Die Erde besitze den Brechungsindex n_o. Dann lässt sich sein Vektorpotential im Hohlraum

Abb. 4 Hohlleitersystem Erde-Ionosphäre

Erde-Ionosphäre nach dem Vorbild von H. WEYL [8] unter Berücksichtigung der Randbedingungen zu

$$\frac{\pi}{2} + i\infty 2\pi$$

$$\prod (p, \varphi, z) = -\frac{jkp}{2\pi} \int_{0}^{\infty} \int_{0}^{-jkp S \cos(\varphi-\varphi')} sd\vartheta'd\varphi'$$

$$\left[e^{-jkC|z_{0}} - z|_{+R_{e}}(C)e^{-jkC(z_{0} + z)} + \sum_{n=1}^{\infty} R_{1}^{n}(C)R_{e}^{n-1}(C) \left\{ e^{-jkC(2nh-z_{0}-z)} + R_{e}(C)e^{-jkC(2nh-z_{0}+z)} + R_{e}^{2}(C)e^{-jkC(2nh+z_{0}+z)} \right\} \right]$$

$$0 \leq z \leq h \qquad (19)$$

bestimmen.

Hier ist

$$\sin \vartheta = S
 \cos \vartheta = C$$

$$R'_{(\frac{1}{e})}(C) = \frac{n^{2}_{(\frac{1}{e})}C - \sqrt{n^{2}_{(\frac{1}{e})} - 1 + C^{2}}}{n^{2}_{(\frac{1}{e})}C + \sqrt{n^{2}_{(\frac{1}{e})} - 1 + C^{2}}},$$
(20)

Wir betrachten ein Glied der Summe unter dem Integral Gl. 19, z.B. $-\frac{jk\vec{p}}{2\pi} \iint R_{i}^{n}(C)R_{e}^{n}(C) e^{-jkC(2nh+z_{0}-z)} - jkS \rho \cos (\varphi-\varphi')$ S d ϑ 'd ' φ '
(21)

In der Abb. 5 entspricht dies Glied dem Vektorpotential eines Ersatzdipols an der Stelle 2nh + $z_0 - z$. H. WEYL [8] folgend drehen wir die Koordinatenachse des Einheitskreises (1, ϑ' , φ') in Richtung der Verbindungslinie Ersatzdipol-Aufpunkt und benennen dies neue Koordinatensystem (ϑ'' , φ''). Die Verbindungslinie Ersatzdipol-Aufpunkt schliesst mit der positiven z-Achse den Winkel ϑ'_{1n} ein:

$$\cos \vartheta_{1n} = \frac{z - z_0 - 2nh}{r_{1n}}$$

 $r_{1n}^2 = \rho^2 + (2nh + z_0 - z)^2$

und es ist

$$c = \cos\vartheta' = \cos\vartheta_{1n} \cos\vartheta'' + \sin\vartheta'_{1n} \sin\vartheta''_{cos} \varphi''$$

Die Integration nach $\phi^{"}$ sei ausgeführt und wir erhalten den Mittelwert $$2\pi$$

$$\overline{\mathbb{R}_{i}^{n}} \overline{\mathbb{R}_{e}^{n}} = \frac{1}{2\pi} \int_{O} \mathbb{R}_{i}^{n} \mathbb{R}_{e}^{n} d \varphi'' .$$

Nach Einführung der neuen Integrationsvariablen

$$= \frac{1 - \cos \vartheta''}{1}$$

und Integration längs eines Weges gemäss der Passmethode bekommen wir aus Gl. 21

$$\vec{p}_{ke}^{-jkr} \ln \int_{O} e^{-kr} \ln^{t} \frac{1}{R_{i}^{n}} \frac{1}{R_{e}^{n}} dt \qquad (21a)$$

Sobald $kr_{1n} \gg 1$ ist, liefert nur die nächste Umgebung um den Punkt t = 0 (cos $\vartheta'' = 1$) einen Beitrag zum Integral in Gl. 21 a, und wir können setzen

 $\overline{\mathbb{R}^n_i} \ \overline{\mathbb{R}^n_e} \approx \mathbb{R}^n_i(\cos \mathcal{N}_{1n}) \mathbb{R}^n_e(\cos \mathcal{N}_{1n})$.

Der hier begangene Fehler ist von der Grössenordnung 1/r_{1n}. Wir erhalten schliesslich aus Gl. 21

$$\frac{\vec{p}e^{-jkr_{1n}}}{r_{1n}} \mathbb{R}^{n}_{i}(\cos\vartheta_{1n}) \mathbb{R}^{n}_{e}(\cos\vartheta_{1n}) .$$
(21b)

Diese Näherung gilt, solange $r_{1n} \gg \lambda$, $|n_1|$ von mässiger Grösse und cos $\vartheta_{1n} \neq 0$ ist, d.h. für nicht zu kleine Werte von $2nh/r_{1n}$. Sie versagt also für das zweite Glied des Integrals in Gl. 19, weil hier die beiden letzten Bedingungen nicht erfüllt sind. Dieses Glied gemeinsam mit dem ersten stellt aber gerade das Vektorpotential der Strahlung eines vertikalen Dipols über einer ebenen leitenden Erde ohne Berücksichtigung der Ionosphäre dar. Dieses Problem ist von A. SOMMERFELD [9] gelöst worden. Es ist

$$-\frac{jk\vec{p}}{2\pi} \iint e^{-jkS} \rho \cos(\varphi - \varphi') \left[e^{-jkC|z-z_0!} + R_e(C) e^{-jkC(z+z_0)} \right] \operatorname{Sd} \vartheta' d \varphi'$$

$$= \frac{2\vec{p}e^{-jk\sqrt{\rho^2 + (z-z_0)^2}}}{\sqrt{\rho^2 + (z-z_0)^2}} \quad \mathbb{W}(\alpha) \qquad (22)$$

Hier ist $W(\alpha) = |W| e^{-j\Lambda}$ die SOMMERFELD'sche Dämpfungsfunktion, und $\alpha = -jk\rho (1 - \sqrt{\frac{n_e^2}{1 + n_e^2}}) \approx -\frac{ik\rho}{2(\epsilon' - j \frac{5}{e})/\omega\epsilon}$

bedeutet die numerische Entfernung.

Strahlenoptisch stellt die Gl. 22 die Bodenwelle dar. Die Glieder in der Art der Gl. 21bsind alle möglichen im Aufpunkt P ankommenden Raumwellen, die auf ihrem Wege durch n-fache Reflexion an der Ionosphärenunterkante und n +v -fache Reflexion an der Erdoberfläche beeinflusst werden. In der Abb. 5 sind Bodenwelle und die ersten vier Raumwellen eingezeichnet.

Aus Gl. 19 erhält man schliesslich für $z = z_0 = 0$ und unter Vernachlässigung der zweiten und höheren Potenzen von $1/r_n$

$$E_{z} = -\frac{\mu_{o}c^{2}}{4\pi} \frac{1}{\beta} \frac{\partial}{\partial\rho} \left[S \frac{\partial \overline{\mu}}{\partial\rho} \right]$$
(23)
$$= 2E_{o} \left[W(\alpha) + 2 \sum_{n=1}^{\infty} \sin^{3} \vartheta_{n} R_{1}^{n} R_{e}^{n} \frac{(1 + R_{e})^{2}}{4} e^{jk(\beta - r_{n})} \right]$$
$$E_{o} = \frac{\omega^{2} / u_{o} \overline{p}}{4} \frac{e^{-jk} \rho}{4} \text{ ist die Freiraumfeldstärke des Dipols im}$$

Abstand p

$$\sin\vartheta_n = \frac{f}{r_n}$$
$$r_n^2 = \rho^2 + (2nh)^2$$

5

4π

Nun ist für mittleren Erdboden

$$\varepsilon_{e}^{i} = 10$$

 $\delta_{e}^{i} = 10^{-2} \ \Omega^{-1} \text{m}^{-1}$

	and the second	a de la companya de
f (kHz)	20	50
α	0,02	0,145
W	0,99	0,95
Λ	2 ⁰	15 ⁰

Tabelle 3

Tabelle 3 gibt Betrag und Argument von W für die Entfernung 1000 km und die beiden Frequenzen 20 und 50 kHz an. Die Werte wurden aus Tafeln von RJASIN [10] ermittelt. Unterhalb von 50 kHz kann praktisch W = 1 gesetzt werden.

Die R_i und R_e sind jetzt die FRESNEL'schen Reflexionskoeffizenten für vertikale Polarisation

Abb. 6 Betrag |R| und Phase \emptyset des FRESNEL'schen Reflexionskoeffizienten für verschiedene Werte von $L = \frac{5}{\varepsilon_0 \omega}$ in Abhängigkeit vom Einfallswinkel \Im

$$R_{\mu} = |R| e^{i \not 0} = \frac{n^2 \cos \vartheta - \sqrt{n^2 - \sin^2 \vartheta}}{n^2 \cos \vartheta + \sqrt{n^2 - \sin^2 \vartheta}}$$
(20a)

Abb. 6 zeigt Betrag |R|' und Phase \emptyset für

$$n^2 = 1 - \frac{j}{L}$$
 mit $L = 10^{-4}$; 10^{-1} ; 1; 10

 $L = 10^{-4}$ entspricht mittleren Bodenverhältnissen bei $\omega = 10^{5} s^{-1}$. In diesem Falle ist schon bei sehr grossen Einfallswinkeln nahezu $R_{\rho} = 1$. Man erhält also aus Gl. 22

$$E_{z} = 2 E_{o} \left[1 + 2 \sum_{n=1}^{\infty} \sin^{3} \vartheta_{n} R_{i}^{n} e^{jk(\hat{y} - r_{n})} \right]$$
(23a)

Der Abb. 6 entnimmt man, dass für $0,1 \stackrel{\prime}{=} L \stackrel{\prime}{=} 10$ der Betrag [R] bei grossen Einfallswinkeln ähnlich verläuft. Da für die tiefe Ionosphäre L von der Grössenordnung 1 ist (siehe Abschnitt 2), folgt daraus, dass der genaue Wert der Leitfähigkeit der Modellionosphäre bei schrägem Einfall nicht sehr kritisch ist. Dies berechtigt uns, am Tage mit einer konstanten Leitfähigkeit der Modellionosphäre zu rechnen, auch dann, wenn infolge jahreszeitlicher Einflüsse oder durch Sonneneruptionen das Elektronendichteprofil der Abb. 1 deformiert oder nach oben bzw. nach unten verschoben ist. Die scheinbare Höhe h bleibt der einzige Parameter.

5: Wellenoptische Theorie der Längstwellenausbreitung

Mit den gleichen Voraussetzungen für das System Erde-Ionosphäre wie im Abschnitt 4 gewinnt man aus dem Ansatz

$$\begin{split} \begin{split} & \prod_{e} = \frac{jk\vec{p}}{2} \int H_{o}^{(2)}(kS_{i}) \begin{bmatrix} e^{-jkC|z-z}o! + f_{1}e^{-jkC(z+z_{0})} + f_{2}e^{-jkC(z_{0}-z)} \end{bmatrix} S d\vartheta \\ & \prod_{e} = \frac{jk_{e}\vec{p}}{2} \int H_{o}^{(2)}(k_{e}S_{e}g) f_{e} e^{jk_{e}C_{e}z} S_{e}d\vartheta \qquad z \leq 0 \end{split}$$

16

$$S_{e}^{2} + C_{e}^{2} = 1$$

 $S_{e}^{2} + C_{e}^{2} = 1$
 $S_{i}^{2} + C_{i}^{2} = 1$

17.

sowie den Randbedingungen

$$\begin{aligned}
\overline{I}_{e} &= \overline{I} & \overline{I}_{i} &= \overline{I} \\
\frac{1}{k_{e}^{2}} \frac{\partial \overline{I}_{e}}{\partial z} &= \frac{1}{k^{2}} \frac{\partial \overline{I}}{\partial z} & \text{für } z = 0; \\
\frac{1}{k_{e}^{2}} \frac{\partial \overline{I}_{i}}{\partial z} &= \frac{1}{k^{2}} \frac{\partial \overline{I}}{\partial z} & \text{für } z = h
\end{aligned}$$

$$S = n_i S_i = n_e S_e$$
 mit $n_i = k_i/k$ und $n_e = k_e/k$

$$f_{1} = \frac{R_{e}(1 + R_{i}e^{-j2kC(h-z_{o})})}{1 - R_{i}R_{e}e^{-j2khC}}$$

$$f_{2} = \frac{R_{i}(R_{e}e^{-j2khC} - j2kC(h-z_{o}))}{1 - R_{i}R_{i}e^{-j2khC}}$$
(26)

Die R; und Re haben die Form der Gl. 20.

Zum gleichen Ergebnis kommt man, wenn in Gl. 19 die Reihen unter dem Integral aufsummert werden und die Integration über ϕ " vollzogen wird.

Indem nur der Beitrag der Umlaufintegrale um die Singularitäten an den Stellen

$$R_{j} R_{e} e^{-2jkC_{n}h} = e^{-2\pi jn}$$
 $n = 0, 1, 2 \dots$ (27)

berücksichtigt und $R_e = 1$ gesetzt wird, erhält man (für $z = z_0 = 0$) [5]

$$\overline{I} = -\frac{2\pi j}{h} \stackrel{\rightarrow}{\stackrel{\rightarrow}{p}} \sum_{n=0}^{\infty} \frac{\underline{H}_{0}^{(2)}(kS_{n}^{\circ})}{(1+\frac{j}{2khR_{i}}\frac{dR_{i}}{dC})}$$
(28)

und

$$E_{z} = 2 E_{0} \frac{\sqrt{\rho \lambda}}{h} e^{-j\frac{\pi}{4}} \sum_{n=0}^{\infty} \int_{n} S_{n}^{3/2} e^{jk} \beta^{(1-S_{n})} (\lambda \ll \beta)$$
(29)

Hier ist bereits von der asymptotischen Näherung der HANKEL' schen Funktion

$$H_{o}^{(2)}(x) \rightarrow \sqrt{\frac{2}{\pi x}} e^{-j(x - \frac{\pi}{4})}$$

Gebrauch gemacht worden.

Weiter gilt in guter Näherung für L von der Grössenordnung 1

$$\delta_{n} = (1 + \frac{j}{2hkR_{i}} \frac{dR_{i}}{dC})_{C=C_{n}} \approx 1 \qquad \text{für } n \ge 1$$
$$\delta_{o} \approx 1/2 \qquad \qquad \text{für } f < 5 \text{ kHz}$$

Oberhalb 5 kHz ist die Dämpfung des O.Modes so gross, dass er gegenüber den Modes höherer Ordnung vernachlässigt werden kann. Die Bestimmungsgleichung der Mode-Eigenwerte (Gl.27) lautet ausgeschrieben

$$\frac{(L-j)C_{n} - \sqrt{C_{n}^{2}L^{2} - iL}}{(L-j)C_{n} + \sqrt{C_{n}^{2}L^{2} - iL}} \frac{(\varepsilon_{e}^{*}G-j)C_{n} - \sqrt{(\varepsilon_{e}^{*}-1)G^{2} - jG + C_{n}^{2}G^{2}}}{(\varepsilon_{e}^{*}G-j)C_{n} + \sqrt{(\varepsilon_{e}^{*}-1)G^{2} - jG + C_{n}^{2}G^{2}}}$$
(27a)

$$2jkhC_{n} - 2\pi jn$$

$$= e$$

mit

$$C_{n}^{L} + S_{n}^{L} =$$

$$L = \frac{\varepsilon_{0}\omega}{\varepsilon_{1}}$$

$$G = \frac{\varepsilon_{0}\omega}{\varepsilon_{e}}$$

Für L ≈ 1 und G $\leq 10^{-4}$ ist

$$G < C_n < L$$
 .

Es gilt dann häherungsweise

$$R_e \approx 1 - \frac{2\sqrt{\overline{G}}}{\overline{c}_n} e^{j \pi/4} = 1 - 2 q_n$$

18

Mit dem Ansatz

$$C_{n} = \overline{C}_{n} + \frac{\Delta_{n}(C_{n})}{kh}$$
$$\overline{C}_{n} = \frac{\pi(n - 1/2)}{kh}$$

erhält man aus Gl. 27a

$$C_{n} = \frac{\alpha A_{n}}{\sqrt{jL} \sqrt{1 - A_{n}^{2} \alpha^{2}}}$$
(30)

mit

$$\alpha = \frac{\mathbf{L}}{\mathbf{L} - \mathbf{j}}$$

$$A_{n} = \frac{1-2q_{n}-e}{1-2q_{n}+e} = -j \tan \alpha_{n} - q_{n}(1+q_{n}) - q_{n} \tan^{2} \alpha_{n} + j q_{n}^{2} \tan \alpha_{n},$$

Gl. 30 entwickelt ergibt

$$\overline{C}_{n} + \frac{\Delta n}{kh} = \frac{\alpha}{\sqrt{jL}} (A_{n} + \frac{1}{2}\alpha^{2} A_{n}^{3} + \frac{3}{8}\alpha^{4} A_{n}^{5} \cdots)$$
(30a)

oder

$$\Delta_{n} = \langle u_{n} + jv_{n} = \frac{j\sqrt{jL}}{\alpha} \overline{c}_{n} + \frac{j\sqrt{jL}}{\alpha kh} \Delta_{n} + (\frac{\alpha^{2}}{2} - \frac{1}{3})\Delta_{n}^{3} - (\frac{3}{8}\alpha^{4} - \frac{\alpha^{2}}{2} + \frac{2}{15})\Delta_{n}^{5}$$

$$+ jq_{n}(1+q_{n}) - q_{n}\Delta_{n}(\frac{3}{2}\alpha^{2} - 1)(j\Delta_{n} + q_{n}) \dots$$
(31)

Das sind zwei Gleichungen für Real- und Imaginärteil von Δ_n

$$u_n = f(u_n, v_n)$$

 $v_n = g(u_n, v_n)$

aus denen u_n und v_n durch ein Näherungsverfahren gewonnen werden können. Sie gelten etwa für

$$kh \ge 1/2\pi$$
 und $0,1 \le L \le 10$.

- 20 -

Insbesondere ist für G = O und bei Beschränkung auf die 5. Potenz von Δ_n

$$\Delta_{n}^{=Be} \left[r_{no}^{j\phi_{0}} + r_{1}^{3\beta} r_{no}^{j\phi_{1}} + r_{2}^{j\phi_{1}} + r_{2}^{j\phi_{2}} + 3\gamma \right] + \left\{ 3 r_{1}^{2} r_{1}^{2j\phi_{1}} + r_{2}^{j\phi_{2}} \right\}_{B}^{5} r_{no}^{5} r_{no}^{5} + 5j(\phi_{0} + \gamma) \right]$$
(32)

mit

$$B e^{j\varphi} = \frac{1}{1 - \frac{j\sqrt{jL}}{\alpha hk}}$$

$$r_{no}e^{j\varphi_{0}} = \frac{j\sqrt{jL}}{\alpha} \overline{v}_{n}$$

$$r_{1}e^{j\varphi_{1}} = \frac{\alpha^{2}}{2} - \frac{1}{3}$$

$$r_{2}e^{j\varphi_{2}} = -\frac{3}{8}\alpha^{4} + \frac{\alpha^{2}}{2} - \frac{2}{15}$$

$$r_{no} = \frac{2n - 1}{4 H} \sqrt{\frac{1 + L^{2}}{L}}$$

$$tang \varphi_{0} = \frac{1 + L}{1 - L}$$

$$H = \frac{h}{\lambda}$$

Schliesslich ist

$$S_{n} = \sqrt{1 - C_{n}^{2}} = \overline{S}_{n} (1 - \frac{\Delta n^{\overline{C}}n}{kh\overline{S}_{n}^{2}} - \frac{\Delta n^{2}}{2k^{2}h^{2}\overline{S}_{n}^{4}} \dots) = \alpha_{n} - j\beta_{n}$$
(33)

mit $\overline{S}_n^2 + \overline{C}_n^2 = 1$

Die nullte Näherung von Gl. (31) lautet

$$\Delta_{n}^{0} = \frac{j \sqrt{jL}}{\alpha} \quad \overline{C}_{n} + iq_{n}$$
(31a)

$$S_{n}^{o} = \alpha_{n}^{o} - jB_{n}^{o} = \overline{S}_{n} \left[1 - \frac{\overline{C}_{n}}{kh\overline{S}_{n}^{2}} \left(\frac{j\sqrt{jL}}{\alpha} - \frac{\overline{C}_{n}}{\alpha} + jq_{n} \right) \right]$$
(33a)

(34

$$\alpha_{n}^{0} = \overline{S}_{n}^{+} \frac{1}{\sqrt{2} \ kh\overline{S}_{n}} \left[\frac{\pi^{2} (n-1/2)^{2}}{k^{2}h^{2}} \left(\sqrt{L} - \frac{1}{\sqrt{L}} \right) + \sqrt{G} \right]$$

$$\beta_n^{\circ} = \frac{1}{\sqrt{2} \ \mathrm{kh}\overline{\mathrm{S}}_n} \left[\frac{\pi^2 (n - 1/2)^2}{\kappa^2 \mathrm{h}^2} \left(\sqrt{\mathrm{L}} + \frac{1}{\sqrt{\mathrm{L}}} \right) + \sqrt{\mathrm{G}} \right]$$

Die Gleichungen 34 stammen von J.R. WAIT [6]. In den Abb. 7 - 12 sind die aus den Formeln Gl. 32 und 33 errechneten werte von α_n und β_n als Funktion von L im Bereich $0,1 \leq L \leq 10$ gezeichnet. Der Parameter ist $H = \frac{h}{\lambda}$, und die Werte gelten für G = 0.

Aus den Gl. 34 folgt, dass der Einfluss der endlichen Leitfähigkeit der Erde sich durch eine additive Grösse bemerkbar macht, die für kleine n nur wenig von der Mode-Zahl abhängt:

$$\frac{\sqrt{\overline{G}}}{\sqrt{2} \ \mathrm{kn}\overline{\mathrm{S}}_{1}} \frac{\overline{\mathrm{S}}_{1}}{\overline{\mathrm{S}}_{n}}$$

Es lässt sich also in Gl. 29 ein für die Dämpfung durch die endliche Leitfähigkeit der Erde verantwortlicher Exponentialausdruck

$$e^{-(1 + j) l} \quad \text{mit} \quad l = \frac{9}{h\overline{s}_1} \sqrt{\frac{\varepsilon_0 \pi c}{\lambda \cdot \overline{b}_e}}$$
(35)

vor die Summe ziehen.

Um den Bereich guter Konvergenz der wellenoptischen Lösung Gl. 29 abzuschätzen, betrachten wir die nullte Näherung der Mode-Eigenwerte Gl. 34. Der Betrag des Gliedes n-ter Ordnung hat die Grössenordnung

04 80 90 40 80 20 10 2 H & 9 04.8 E-OK 9=H S=H *ħ =H* 1 E=H 1. 2=H 2-01 L=H L.994 +-0 - 22 -

- 23.-10-Ady - dz H=2 A65.8 H=3 H=4 H=5 102 H= 6 10 to 6 8 5 0,4 0,6 0,8 1,0 4 2 0,3 0,2 0,1

5 3 4 6 8 40	014 80 90	<u>40 E0 7</u>	:0
7			
	0-11		
	9=H S=H		
	- ' / ≈/ '/		
			+70 -
01 8 9 4 8 7	01 80 90	<i>†'0 &'0</i>	: <u>'0</u>
7			
	9=H		
the same of the same state of			
	- 2774		
	5-74 		

- 27 -

mit
$$\gamma_n = \frac{\rho \pi^2 (n - 1/2)^2}{\sqrt{2} h^3 k^2 \overline{s}_n} (\sqrt{L} + \frac{1}{\sqrt{L}})$$

Mit den Werten L = 1 und $\overline{S}_n \approx 1$ folgt

$$\gamma_5 = 7,2 \frac{9 \lambda^2}{h^3}$$

 $\frac{\beta \lambda^2}{h^3} > 0,7$ $e^{-\gamma_5} < 10^{-2}$

Für

 $-\gamma_n$

ist

Die Reihe Gl. 29 kann also auf die ersten vier Glieder beschränkt bleiben:

Wenn wir uns bei der strahlenoptischen Lösung Gl. 23 a auf die ersten vier Glieder beschränken wollen, also voraussetzen, dass der Betrag der viermal-reflektierten Welle

$$\sin^3 \vartheta_4 |R_I|^4 < 10^{-2}$$
 ... ist,

dann muss für L = 1

$$\frac{\rho}{8h} = \tan \theta_4 < 2,6$$
(37)

sein (vergl. Abb. 4 und Abb. 6).

Der Bereich geringer Konvergenz der Gl. 29 ist für nicht zu grosse Entfernungen <u>geleichzeitig</u> der Bereich guter Konvergenz der Gl. 23a. Der Betrag eines Mode-Gliedes der Gl. 29 besitzt als Funktion der Höhe ein Maximum bei einer optimalen Höhe h_{opt}, wie aus der Näherung Gl. 34 folgt. Es ist der Betrag des n-ten Mode-Gliedes proportional

$$\frac{1}{n} \stackrel{p \land Q_n}{=} \frac{p \land Q_n}{n^3} \quad \text{mit} \quad Q_n = \frac{(n - 1/2)^2}{\sqrt{2} 4 \overline{S}_n} (\sqrt{L} + \frac{1}{\sqrt{L}})$$

und

$$h_{opt} = 3 \rho \lambda^2 Q_n$$

(38).

(36)

Die optimale Höhe wächst mit der Entfernung, Wellenlänge und Modezahl.

6. Der Einfluss der Erdkrümmung auf die Ausbreitung der Längstwellen

W.O. SCHUMANN (11) hat für die gekrümmte Erde das Potential eines vertikalen Dipols im Gebiet zwischen Erdoberfläche und scharf begrenzter Ionosphäre durch Entwicklung nach Eigenfunktionen bestimmt. Seine Gleichung für die Vertikalkomponente der elektrischen Feldstärke unterscheidet sich von der Gl. 29 nur durch den Faktor

(39) (39)
$$\sqrt{\frac{100}{100}} \sqrt{\frac{100}{100}} \sqrt{\frac{100}{$$

(Ə ist der Winkelabstand zwischen Sender und Empfänger), durch den die Fokussierungswirkung des gekrümmten Systems Erde-Ionosphäre zum Ausdruck kommt. <u>Bei ei</u>ner Entfernung von

 $\mathbf{g}' = 2000 \text{ km} \text{ ist } \Theta = 18^{\circ} \text{ und } \sqrt{\frac{\Theta}{\sin \Theta}} = 1,01.$ Bis zu dieser Entfernung braucht also die Erdkrümmung nicht berücksichtigt zu werden. Im Falle der strahlenoptischen Betrachtung erhält man an Stelle der Gl. 23a

$$E_{z} = 2E_{o}\left[\left(W'(\rho',\lambda) + 2\sum_{n=1}^{\infty} \sin^{2}\theta_{n} \frac{\rho'}{r_{n}'} \operatorname{R}_{i}^{n} \operatorname{B}_{n} \operatorname{e}^{ik(\rho'-r_{n}')}\right] (40)$$

Hier ist $2E_0W'(\gamma',\lambda)$ die von VAN DER POL und BREMMER [12] abgeleitete Bodenwelle für die gekrümmte Erde,

$$B_{n} = (1 + \frac{h}{a}) \sqrt{\frac{2n \sin \theta/2n}{\sin \theta}} \left[\frac{1 - \frac{h}{a} - \cos \theta/2n}{(1 + \frac{h}{a})\cos \theta/2n - 1} \right]$$

ein durch die Krümmung der Erde auftretender Fokussierungsfaktor,

> a der Erdradius ρ' = a θ Weglänge der Bodenwelle (vergl. Abb. 13) r'n Weglänge der n-fach reflektierten Welle h Höhe der Ionosphäre über dem Erdboden

2111(四月)

- 30 -

Abb. 13 Geometrie des Strahlenweges der n-fach reflektierten Welle

Die Gl, 40 gilt zunächst nur bis zum geometrischen Horizont der einfach reflektierten Welle. Dieser liegt für h = 70 km in einer Entfernung von $\beta_{\rm h}$ = 1900 km vom Sender. Bei Annäherung an den geometrischen Horizont beginnt die strahlenoptische Beschreibung der reflektierten Wellen ihre Gültigkeit zu verlieren. Auf Grund von beugungstheoretischen Ueberlegungen kann ein Korrekturfaktor gewonnen werden, der eine Funktion von

$$\left(\frac{a}{\lambda}\right)^{1/3} \frac{(p'-P_h)}{a}$$

ist und der im Sinne einer Verkleinerung der Amplitude der

reflektierten Welle wirkt. Für $p = p_h$ und $\lambda = 20$ km hat er den Wert von 0,7. Die fokussierende Wirkung der gekrümmten Erde wird dadurch teilweise wieder aufgehoben $\lceil 13 \rceil$.

7. <u>Vergleich von wellenoptischer und strahlenoptischer Beschrei-</u> bung der Längstwellenausbreitung

Da die auf Grund von strahlenoptischer und wellenoptischer Rechnung bestimmten Feldstärken in Gl. 23a und Gl. 29 nur Näherungen darstellen, ist es angebracht, die aus beiden Gleichungen ermittelten Werte in einem Beispiel zu vergleichen.

Für das folgende Beispiel wurde die Frequenz f = 15 kHz ($\lambda = 20$ km) gewählt. Bei $\beta = 1000$ km und h = 70 km ist dann (siehe Gl. 36 und Gl. 37)

$$\frac{g \lambda^2}{h^3} = 1,2$$
 und $\frac{g}{-8h} = 1,8$

An dieser Stelle konvergieren also die beiden Reihen annähernd gleich gut.

		1			1					
5	0	100	200	300	400	500	600	700	800	900
b _w				1,45	0,94	0,24	1,31	1,63	1,97	2,54
bs	1.00	1,04	0,88	1.37	0,93	0,24	1,38	1,54	2,00	2,46
φ _w				8	32	-58	-51.	-39	-31	-18
φ _s	0	3	. 7	-3	: 35	-53	-48	-33	-28	-13

5	1000	1250	1500	1750	2000	2500	3000
bw	2,68	2,01	1,64	2.,41	2,62	2,32	2,74
b _s	2,64	2,05	1,56	2,34	2,68		
φ _w	3	26	15	20	44	62	87
φ _s	7	33	22	27	51		

Tab. 4 Betrag b und Phase φ von $\frac{\Xi}{2E}$ als Funktion der Entfernung g mit f=15 kHz; h=70 km; L=1; G=0, errechnet aus Gl. 23a (Symbol "s") und Gl. 29(Symbol "w").

- 31 -

In Tabelle 4 sind die aus den Gl. 23aund 29 berechneten Werte von Betrag und Phase von $E_Z/2E_0$ als Funktion der Entfernung mit h = 70 km, L = 1 und G = 0 gegenübergestellt. Die Reihen sind jeweils nur bis zu einer solchen Entfernung berechnet, bei der eine Beschränkung auf die ersten fünf Glieder genügt. Das ist in unserem Beispiel im strahlenoptischen Falle $\rho \leq 2000$ km und im wellenoptischen Falle $\rho \geq 300$ km. Im Ueberlappungsbereich 300 km $\leq \rho \leq 2000$ km ist die Differenz zwischen beiden Daten nicht grösser als 5% beim Betrag bzw. 7° beim Argument. Tatsächlich ist die Differenz noch kleiner infolge der zufälligen Fehler der einzelnen Werte, die durch ein graphisches Verfahren ermittelt worden sind (siehe Abb. 15). In der Tabelle 5 ist für gleiche

h	20	30	35	40	45	50	55	60	65
b _w	0,07	0,99	1,65	2,02	2,11	2,29	1,92	1,67	2,18
b _s	an a' a' an a' a' a' an a' a' a'	1,30	1,78	2,06	2,07	2,21	1,95	1,68	2,18
φ _w	455	201	135	90	63	43	22	27	19
φ _s	a a a	196	136	84	68	47	24	31	25

1	e s si		145 1			•	1
	h:	.70	75	80	85	[•] 90	. 100
	b _w	2,68	2,42	1;84	1,67	1,43	0,05
	b _s	2,64	2;39	1,78	1,74	1;42	0,04
	φ _w	3	-23	-34	-42	-66	-303
	φ _s	7	-20	-31	-34	-63	-330

Tag. 5 Betrag b und Phase φ von $\frac{E_Z}{2E_0}$ als Funktion der Höhe h mit f=15 kHz; ρ =1000 km; L=1; G=0, errechnet aus Gl. 23a (Symbol "s") und Gl. 29 (Symbol "w").

Frequenz und Leitfähigkeit $E_z/2E_o$ nach Betrag und Phase in Abhängigkeit von der Höhe h bei der Entfernung g =1000 km angegeben. Auch hier herrscht oberhalb h = 30 km ausgezeichnete Uebereinstimmung zwischen strahlenoptischer und wellenoptischer Rechnung, wobei der Bereich guter Konvergenz für Gl. 23abei

 $h \ge 35$ km und für Gl. 29 bei $h \le 100$ km liegt. Beide Gleichungen sind also äquivalent und ergänzen sich gegenseitig.

In Abb. 14 sind Betrag und Phase von $E_g/2E_o$ als Funktion von gbzw. h in Kurvenform dargestellt. Der Ueberlappungsbereich befindet sich zwischen 300 und 2000 km Entfernung und oberhalb 30 km Höhe in 1000 km Entfernung bzw. 60 km Höhe in 2000 km Entfernung. Die obere Grenze der Höhe des Ueberlappungsbereiches, die bei der Frequenz von 15 kHz zu 100 km Höhe bestimmt worden war, nimmt mit wachsender Frequenz ab.

In der Abb. 14a sind die beiden ersten Minima an den Stellen 200 und 500 km und die dazugehörigen Maxima an den Stellen 300 und 1000 km die Folge der Ueberlagerung von Boden- und erster Raumwelle, der Wendepunkt bei 650 km sowie das Minimum bei 1500 km und das darauffolgende Maximum bei 1900 km die Folge der Ueberlagerung von einmal und zweimal reflektierter Velle.

In der Abb. 145 entsteht das Hauptmaximum in 72 km Höhe durch die Ueberlagerung von Bodenwelle, einmal und zweimal reflektierter Welle, während die beiden Minima in 59 und 82 km Höhe durch die Interferenz von erster und zweiter Raumwelle zustandekommen. Dies wird veranschaulicht durch die Abb. 15. Hier bedeutet der vom Punkte O bis zu einem der Kreise gezogene Vektor die Summe von Boden- und einmal reflektierter Welle. Die von den Kreisen ausgehenden Linienzüge geben den Anteil der zweimal bzw. drei- und viermal reflektierten Wellen an. Der vom Punkte O bis zu einem der durch die Ortskurve verbundenen Endpunkte der Vektor- summe gezogene Vektor ist $E_z / 2E_0$. Daraus sind die strahlen- optischen Werte der Tabellen 4 und 5 sowie der Abb. 14 ent - standen.

Der Vollständigkeit halber ist in der Abb. 16 die aus der wellenoptischen Gleichung 29 gewonnene Vektorsumme

Abb. 15 Vektorsumme der Mehrwegeausbreitung. Die Strecke O - A entspricht der Bodenwelle, die Strecke vom Punkt A bis zu einem der Kreise entspricht der einfach reflektierten Welle, der Streckenzug von einem der Kreise bis zur Ortskurwe entspricht den zwei-, drei- und vierfach reflektierten Wellen. Der Vektor von O zur Ortskurve ist E_z/2E_o. (siehe Tab. 4 und 5 sowie Abb. 14).

- 34 --

$$\sum_{n=1}^{\infty} \frac{s_n^{3/2}}{s_1^{3/2}} e^{ik(s_1 - s_n)g}$$
(41)

für die oben gewählten Beispiele dargestellt. Mit der Grösse

$$e^{-i\pi/4} \frac{\sqrt{9\lambda}}{h} s_1^{3/2} e^{ik(1-s_1)g}$$

multipliziert, ergibt Gl. 41 den Ausdruck $(E_z / 2E_0)_w$, der in den Tabellen 4 und 5 tabelliert ist.

Die Hauptmaxima der Abb. 14 kommen, wie man sieht, wellenøptisch durch die Ueberlagerung der Modes erster und zweiter Ordnung zustande.

Die Uebereinstimmung der GL. 23a und GL, 29 für den ebenen Wellenleiter Erde-Ionosphäre und unendlich gut leitender Erde Legt es nahe, bei der strahlenoptischen Rechnung den Einfluss der endlichen Leitfähigkeit und den Einfluss der Erdkrümmung durch die gleichen Faktoren zu berücksichtigen, wie dies in der wellenoptischen Rechnung geschieht (siehe Gl. 35 und Gl. 39). Dadurch wird die Rechnung wesentlich vereinfacht.

Abb. 16 Mode Summe

Die Strecke

O - A entspricht dem ersten Glied der Reihe. Die Strecke vom Punkte A bis zu einem der Kreise entspricht dem zweiten Glied. Die von den Kreisen ausgehenden Linienzüge entsprechen den dritten, vierten und fünften Gliedern der Reihe.

 $\sum_{n} \frac{s_n^{3/2}}{\frac{3}{2}} e^{ik(s_1 - s_n)}$

8.	Literatur	
1.	H. VOLLAND	Zur Tages-Ausbreitung von Längst- wellen über eine Entfernung von 1000 km
		Technischer Bericht Nr.37 des Heinrich-Hertz- Instituts für Schwingungsforschung, Berlin- Charlottenburg, 1959
		Die Frequenzabhängigkeit der Sonneneruptions- effekte im Längstwellengebiet A.E.U., <u>13</u> (1959), 443 - 448
2.	R.N.BRACEWELL K.G. BUDDEN J.A.RATCLIFFE T.W.STRAKER K. WEEKES	Ionospheric propagation of low and very low frequency over distances less than 1000 km Proc. IEE Part III <u>98</u> (1951), 221 - 236
`3.	R.E.HOUSTON	zitiert bei A.H. WAYNICK The present state of knowledge concerning the lower ionosphere Proc. IRE <u>45</u> (1957), 741 - 749
4.	M. NICOLET	Collision frequency of electrons in the terrestrial atmosphere Phys. of Fluids <u>2</u> (1959), 95 - 99
5.	A.L.ALPERT	Ueber die Ausbreitung sehr langer elektro- magnetischer Wellen über die Erdoberfläche Verlag der Akademie der Wissenschaften d. UdSSR, Moskau, (1955), russ.
6.	J.R. WAIT	The mode theory of VLF ionospheric propagation for finite groun conductivity Proc. IRE <u>45</u> (1957), 760-767
7.	J.W.YABROFF	Reflexion at a sharply-bounded ionosphere Proc. IRE <u>45</u> (1957), 750 - 753
8.	H.WEYL	Die Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter Ann.Phys. <u>60</u> (1919), 481 - 500
9.	A.SOLMERFELD	Partielle Differentialgleichungen der mathematischen Physik Akademische Verlagsanstalt Geest und Portig, Leipzig 1948
10,	RJASIN	zitiert bei M,P. DOLUCHANOW Die Ausbreitung von Funkwellen Verlag Technik, Berlin, 1956

- 38 -

11. W.O. SCHUMANN	Ueber die Oberwellenfelder bei der Aus- breitung langer elektrischer Wellen im System Erde-Luft-Ionosphäre und zwei Anwendungen (horizontaler und vertikaler Dipol) Z. angew. Phys. <u>6</u> (1954),35 - 43
12. H.BREMMER	Propagation of electromagnetic waves Handbuch der Physik, Bd. 16, Springer- Verlag, Berlin, 1958
13. J.R.WAIT A. MURPHY	The geometrical optics of VLF sky wave propagation Proc. IRE <u>45</u> (1957), 754 - 760

- 39 -